Do Now:

Few things to know:

- Suggestion Box (can be anonymous)
- Lots of group and partner work/activities
- I do lots of random calling on people, so be prepared to answer.
- Try my best to grade by next class, but not always possible
- Stay after school when Mrs. Watkins stays (Tuesday/ Wednesday, with exceptions)
- Feel free to e-mail me anytime with questions (mwilmert@parkwayschools.net)

Feb 9-10:26 PM Feb 28-1:53 PM

Unit 3 Day 1: Discrete Probability Distributions

(5-1) Probability Distributions (5-2) Expected Value

Oct 17-9:42 PM

Random Variable: a variable whose values are determined by ______.

RECALL:

Discrete Variables: Variables that can be counted. ______ or _____ or _____ values

Review: Find the following probabilities

1. Rolling a die and getting an even number.

2. Drawing an Ace from a standard deck of cards.

3. The probability that it will rain is 30%. What is the

probability it won't rain? What kind of probability is this?

Mar 9-2:40 PM

I. Probability Dist	ribu	ıtio	ns								
Probability Distribution->				he v e and					of th	ne va	— Ilues.
EX: Create a probability distribution for the sum of rolling two dice											
Outcome (X)	2	3	4	5	6	7	8	9	10	11	12
Outcome (X) Probability P(X)											

. Probability Distributions				Example	
ou are tossing three coins. Represent he probability distribution					
#of tails X	0	1	2	3	
Probability P(X)					
*Think about you sample space first	•				

Mar 9-2:42 PM Mar 9-2:44 PM

Example

I. Probability	Distributions	Example		
Lets graph t	Lets graph the previous example.			
Proba	bility Distribution for # of ⁻	Tails		
Probability				
Number of Tails				

I. Probability Distributions	Example		
You have 5 \$1 bills, 3 \$5 bills, 6 \$10 bills, and 1 \$20 bill in your pocket.			
Create a probability distribution for grabbing one bill from yo	our pocket.		

Mar 9-2:47 PM

Mar 7-8:47 AM

I. Probability Distributions

I. Probability Distributions	Example		
A car dealership keeps track of	the # of cars		
it rents and for how long. Constr			
probability distribution and Graph.			
X #of Days			
0 15			

0	13)	
1	2	5	
2	10)	
# of cars rented	0	1	2
Probability of P(X)			

Graph.

Mar 9-2:46 PM

Feb 28-1:59 PM

I. Probability Distributions	
Described and the second of the second	4: -4-:1

Requirements for a probability distribution

- 1.) The sum of the probabilities of all events must equal _____
- 2.) The probability of each event must be between ____ and ___

II. Expected Value	
EXPECTATION (A.K.A. EXPECTED V	ALUE)
The expected value of a discrete rando variable of a	om
is the	of the
variable.	
NOTATION:	
HOW TO FIND: Take each probability	
by each value and _	·

Mar 9-2:48 PM Mar 27-1:34 PM

II. Expected Value

Example

*When doing expected value questions. Think about how much you would actually win.

One thousand tickets are sold at \$1 each for a color TV valued at \$350. What is the expected value of the gain if a person purchases one ticket?

II. Expected Value

Expected value is also used to determine if a game is fair.

* If the expected value _____, then the game is fair.

*If the expected value is _____,
then thegame is in favor of the house.

*If the expected value is ______,
then the game is in favor of the player

Mar 27-1:35 PM

Mar 27-1:38 PM

II. Expected Value

Example

One thousand tickets are sold at \$1 each for four prizes of \$100, \$50, \$25, and \$10. What is the expected value if a person purchases 1 ticket?

II. Expected Value

Example

The fee for entering a dog in a dog show is \$75. The owner of the winning dog receives \$2,000. Forty dogs are entered in the show. What is the expected value for each contestant?

Feb 28-2:04 PM

Mar 27-1:37 PM

II. Expected Value

Example

Your mother is sending a "care package" to you in college. She insures delivery of the package by paying \$1.60 extra. If the package is lost in the mail, your mother will collect \$60. The probability that the package is lost is .001. What is the expected value of the insurance?

Assignment:

Unit Plan Day 1 HW Worksheet

Unit 4 Quiz

Monday 2/24

Unit 4 Test

Friday 3/13

Mar 27-1:38 PM Mar 9-2:50 PM

Feb 9-11:27 PM